Precedence Grammars

LR parsing is Bottom-Up. We want to find the parse that reverses the derivation that always expands the right-most nonterminal symbol.

Example for the grammar E::=E+T|T T ::= T*F|F F::= id We derive and parse the string x+y*z Derivation:

$$\underline{E}$$

$$E+\underline{T}$$

$$E+T^{*}\underline{E}$$

$$E+\underline{T}^{*}z$$

$$E+\underline{F}^{*}z$$

$$\underline{E}+y^{*}z$$

$$\underline{T}+y^{*}z$$

$$\underline{F}+y^{*}z$$

$$x+y^{*}z$$

The parse we want reverses this. Again the grammar is E::=E+T|T T ::= T*F|F F::= id We parse the string x+y*z

 $\underline{x}+y^*z$ $\underline{F}+y^*z$ $\underline{T}+y^*z$ $E+\underline{y}^*z$ $E+\underline{F}^*z$ $E+\underline{F}^*z$ $E+\underline{T}^*\underline{z}$ $E+\underline{T}^*\underline{F}$ $\underline{E}+\underline{T}$

Terminology:

- 1. A <u>prime phrase</u> is the right side of any grammar rule.
- 2. A handle is the prime phrase that represents one step in the reversal of a right-most derivation.

Examples from the previous bottom-up parse. On each line the prime phrases are underlined and the handle is indicated with H.

E+<u>v</u>*<u>z</u> H

<u>E+T</u>*F

We will develop a series of increasingly general classes of grammars, building towards LR(k) grammars.

- Def. A parenthesis grammar is one in which
 - a) The right hand side of every rule is enclosed in parentheses.
 - b) Parentheses occur nowhere else.
 - c) No two rules have the same right hand side.

```
Example: S::= (aA) A ::= (Aa) | (a) | (SA)
Consider parsing (a ((a (a)) ((a) a)))
```

The parentheses make the prime phrases disjoint. The handle is always the leftmost prime phrase.

We can parse a parenthesis language with a stack machine:

- a) Start with an empty stack.
- b) At each step, if ")" is at the top of the stack, perform a reduction by popping the stack to the first "(" and pushing the appropriate non-terminal on the stack.
- c) The Start symbol should be on the stack at the end of the input.

Try this with the previous example. It works.

Def. A <u>simple precedence grammar</u> is one in which we can insert symbols "<", "=", and ">" to produce a language (treating "<" and ">" as parentheses) that can be parsed like a parenthesized grammar.

To parse a simple precedence language we need a <u>precedence</u> <u>table</u>. The entries are the new symbols "<", "=" and ">", indexed by the symbols that could be on the stack (all terminals and nonterminals) and any symbols we might push on the stack (also all terminals and non-terminals).

At each step we insert the symbol from the table between the current stack top and the new symbol to be pushed on. If the table entry is ">" we do a reduction before pushing anything new onto the stack.

We always start with "<" and the first token on the stack, and at EOF push ">". We should end with the Start symbol on the stack.

Example. Grammar S::=Aab A::=aS | c Precedence table:

	S	Α	а	b	С
S			>		
А			Π		
а	Π	、	<	II	<
b			>		
С			>		

Try using this to parse acabab or aacababab

To generate the precedence table we need two relations: $\mathcal{L}(A)$ is the set of left-most symbols of strings generated from A. $\mathcal{R}(A)$ is the set of right-most symbols of strings generated from A.

These are easy to generate.For the grammarS ::= Aab $\mathcal{L}(S) = \{A, a, c\}$ $\mathcal{R}(S) = \{b\}$ $A ::= aS \mid c$ $\mathcal{L}(A) = \{a, c\}$ $\mathcal{R}(A) = \{S, c, b\}$

To build the precedence table apply the following rules. The grammar is a simple precedence grammar if this can be done unambiguously.

For x and y any terminal or nonterminal grammar symbol,

- 1. Table[x,y] is "=" if there is a grammar rule A ::= $\alpha xy\beta$.
- Table[x,y] is "<" if there is a non-terminal symbol A where Table[x,A] is "=" and y is in L(A). (We know we are starting a new A-rule)
- Table[x,y] is ">" if there is a non-terminal symbol A where Table[A, y] is "=" and x is in R(A). (Do the reduction to A before pushing y.)
- Table[x,y] is ">" if there is a non-terminal symbol A where Table[A,y] is "<" and x is in R(A). (Same as 3 -- do the reduction to A before pushing y.)

It should be easy to apply these rules to the grammar

S ::= Aab
$$\mathcal{L}(S) = \{A, a, c\}$$
 $\mathcal{R}(S) = \{b\}$ A ::= aS | c $\mathcal{L}(A) = \{a, c\}$ $\mathcal{R}(A) = \{S, c, b\}$

and get the table

	S	Α	а	b	С
S			>		
A			Π		
а	=	、	<	II	<
b			>		
С			>		

Problem: If we try to apply these rules to the grammar

E ::= E+T T	£(E)={E,T,F,id}	$\mathscr{R}(E)=\{T,F,id\}$
T ::= T*F F	£(T)={T,F,id}	$\boldsymbol{\mathscr{R}}(T)=\{F,id\}$
F ::= id	$\mathcal{L}(F)=\{id\}$	$\mathscr{R}(F)=\{id\}$

we get the table

	E	Т	F	+	*	id
E				=		
Т				>	=	
F				>	>	
+		(< =)	<			<
*			=			<
id				>	>	

A <u>weak precedence grammar</u> is one where we can build the precedence table and have conflicts only between "<" and "=", and in such a way that we can still parse successfully. This means

- a) There are no conflicts allowed between "<=" and ">".
- b) The right hand side of each grammar rule is unique.
- c) If there are rules A::=αyγ and B::=γ then we cannot have y <=B. This allows us to distinguish between possible handles.

Our common arithmetic grammar

E ::= E+T | T T ::= T*F | F F ::= id

is a weak precedence grammar. The precedence table is

	E	Т	F	+	*	id
E				=		
Т				>	=	
F				>	>	
+		<=	<			<
*			=			<
id				>	>	

We can parse expressions such as x+y+z and x+y*z

<u>Problem</u>: Weak precedence grammars have trouble recognizing errors; we often need to read well past the bad token before we recognize the error. As a result, they are seldom used in practice. This is just a step towards the derivation of LR(k) grammars.

Example:	S::=a+x+E	£ (S)={a}	$\boldsymbol{\mathscr{R}}(S)=\{E,a\}$
	E::=a+E a	ℒ (E)={a}	$\mathscr{R}(E)=\{E,a\}$

	S	E	а	+	x
S					
E					
а				II	
+		П	<		Π
X				Ξ	

If we try to parse a+a+a+a+a+a, the parser reads to the end of the string, reduces it all to an E, and then fails because this isn't the start symbol.